Spatial Disaggregation and Harmonization of gSSURGO

Nathaniel Chaney, Jonathan Hempel, Nathan Odgers, Alex McBratney, Eric F. Wood

MOTIVATION: NEXT GENERATION LAND SURFACE MODELING

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood, ¹ Joshua K. Roundy, ¹ Tara J. Troy, ¹ L. P. H. van Beek, ² Marc F. P. Bierkens, ^{2,3} Eleanor Blyth, ⁴ Ad de Roo, ⁵ Petra Döll, ⁶ Mike Ek, ⁷ James Famiglietti, ⁸ David Gochis, ⁹ Nick van de Giesen, ¹⁰ Paul Houser, ¹¹ Peter R. Jaffé, ¹ Stefan Kollet, ¹² Bernhard Lehner, ¹³ Dennis P. Lettenmaier, ¹⁴ Christa Peters-Lidard, ¹⁵ Murugesu Sivapalan, ¹⁶ Justin Sheffield, ¹ Andrew Wade, ¹⁷ and Paul Whitehead ¹⁸ Received 6 October 2010; revised 21 January 2011; accepted 24 February 2011; published 6 May 2011.

Figure 1. Higher-resolution modeling leads to better spatial representation of saturated and nonsaturated areas, with implications for runoff generation, biogeochemical cycling, and land-atmosphere interactions. Soil moisture simulations on the Little Washita showing the impact that the resolution has on its estimation [Kollet and Maxwell, 2008].

Goal: ~ | 00 meters global Challenges:

- Model Structure
- Input Data
- Computation

Motivation: gSSURGO Tradeoffs

SSURGO: COMPONENT INFO

Component Name: Cerini

145cm

157cm

- Rich database per component
- Uncertainty information
 - Triangular Distribution

Motivation and Outline

gSSURGO Tradeoffs

Advantages	Challenges
Spatial Detail	Survey Bias (Boundaries)
Rich Database	Incomplete
In Situ Observations	Variable Resolution

Goal: Address gSSURGO challenges

Outline:

- A. Testbed: Northern Mississippi State
- B. Methodology: DSMART
- C. Application over CONUS (HPC)
- D. Explore new dataset over CONUS

Source: http://casoilresource.lawr.ucdavis.edu

Testbed: Northern Mississippi State

gSSURGO

*Most Frequent Component per Map Unit

Objective

Legacy Soil Data

Algorithm

Corrected Product

Soil Covariates

DIGITAL SOIL MAPPING

Soil Covariates: CONUS

	Dataset	Soil Covariate	Resolution
Relief	NED DEM	Topographic Index Elevation MRVBF MRRTF Curvature Slope Accumulation Area	30 meters
Parent Material	USGS Aeroradiometric	Uranium Thorium Potassium	4000 meters
Organisms	NLCD	Land Cover Type	30 meters

Algorithm: DSMART

SOIL COVARIATES

Elevation
Gamma radiometric K
Gamma radiometric Th
MRVBF
SAGA wetness index (t = 10)Gamma radiometric U
Landsat 5 TM NDVI
SAGA modified catchment area (t = 10)Valley depth

Slope height MRRTF Mid slope position Landsat 5 TM Band 5
Terrain ruggedness index
Landsat 5 TM Band 1
Landsat 5 TM Band 4
Lansdsat 5 TM Band 7
Landsat 5 TM Band 3
Profile curvature
Slope aspect
Plan curvature
Landsat 5 TM Band 2
Slope gradient

Source: Odgers et al., 2014

Train with legacy soil data

Source: Microsoft Research

Enhanced DSMART: Random Forest

Source: Microsoft Research

Forest output probability:
$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

Enhanced DSMART: Result

Detailed Info: Probabilities

- Decision Tree Leaf Component Histogram
 A. Each grid cell (soil covariates) falls on a leaf
- Implication → Quantify component uncertainty

Goal: Obtain similar spatial detail over CONUS

Application over CONUS

CONUS 30 meters → ~9 billion grid cells

Feasible Approach: Moving window

- Split up domain into overlapping blocks
- Run DSMART on each block
- Small region → small sample size → fast random forest
- \sim 25,000 blocks \rightarrow 500,000 core hours

High Performance Computing: Blue Waters

	Machine Stats	Comparison
Number of Cores	600,000	>13 quadrillion calculations per second
Memory	1.5 petabytes	300 million images
Short Term Storage 25 petabytes		All printed documents in all libraries
Long Term Storage	500 petabytes	10% of all words spoken by humankind

Source: NCSA

500,000 hours (57 years)

DSMART: Montana

DSMART: Texas

DSMART: Mississippi

DSMART: Washington

DSMART: California

DSMART: Southern California

DSMART: Greater LA Area

Angeles National Forest

Conclusions and Next Steps

• dSSURGO - CONUS at 30 meters

50 most probable components (and probabilities)

~2 terabyte dataset (freely accesible)

stream.princeton.edu/dSSURGO

Next Steps

- Applications (e.g. Hydrologic Modeling)
- Validation (Need your help!)

Conclusions and Next Steps

- dSSURGO CONUS at 30 meters
 - 50 most probable components (and probabilities)
 - ~2 terabyte dataset (freely accesible)
 - stream.princeton.edu/dSSURGO
- Next Steps
 - · Applications (e.g. Hydro Questions?
 - Validation (Need your help!)

